Quantized Posterior Hashing: Efficient Posterior Exemplar Search Exploiting Class-Specific Sparsity Structures
نویسندگان
چکیده
This paper shows that exemplar-based speech processing using class-conditional posterior probabilities admits a highly effective search strategy relying on posteriors’ intrinsic sparsity structures. The posterior probabilities are estimated for phonetic and phonological classes using deep neural network (DNN) computational framework. Exploiting the class-specific sparsity leads to a simple quantized posterior hashing procedure to reduce the search space of posterior exemplars. To that end, small subset of quantized posteriors are regarded as representatives of the posterior space and used as hash keys to index buckets of similar exemplars. The k nearest neighbor (kNN) method is applied for posterior based classification problems. The phonetic posterior probabilities are used as exemplars for phoneme classification whereas the phonological posteriors are used as exemplars for higher level linguistic parsing. Experimental results demonstrate that posterior hashing improves the efficiency of kNN classification drastically. This work encourages the use of posteriors as discriminative exemplars appropriate for large scale speech classification tasks.
منابع مشابه
Phonetic and Phonological Posterior Search Space Hashing Exploiting Class-Specific Sparsity Structures
This paper shows that exemplar-based speech processing using class-conditional posterior probabilities admits a highly effective search strategy relying on posteriors’ intrinsic sparsity structures. The posterior probabilities are estimated for phonetic and phonological classes using deep neural network (DNN) computational framework. Exploiting the class-specific sparsity leads to a simple quan...
متن کاملBayesian shrinkage
Penalized regression methods, such as L1 regularization, are routinely used in high-dimensional applications, and there is a rich literature on optimality properties under sparsity assumptions. In the Bayesian paradigm, sparsity is routinely induced through two-component mixture priors having a probability mass at zero, but such priors encounter daunting computational problems in high dimension...
متن کاملRedundant Hash Addressing for Large-Scale Query by Example Spoken Query Detection
State of the art query by example spoken term detection (QbE-STD) systems rely on representation of speech in terms of sequences of class-conditional posterior probabilities estimated by deep neural network (DNN). The posteriors are often used for pattern matching or dynamic time warping (DTW). Exploiting posterior probabilities as speech representation propounds diverse advantages in a classif...
متن کاملLow-rank Representation for Enhanced Deep Neural Network Acoustic Models
Automatic speech recognition (ASR) is a fascinating area of research towards realizing humanmachine interactions. After more than 30 years of exploitation of Gaussian Mixture Models (GMMs), state-of-the-art systems currently rely on Deep Neural Network (DNN) to estimate class-conditional posterior probabilities. The posterior probabilities are used for acoustic modeling in hidden Markov models ...
متن کاملDeep Quantization Network for Efficient Image Retrieval
Hashing has been widely applied to approximate nearest neighbor search for large-scale multimedia retrieval. Supervised hashing improves the quality of hash coding by exploiting the semantic similarity on data pairs and has received increasing attention recently. For most existing supervised hashing methods for image retrieval, an image is first represented as a vector of hand-crafted or machin...
متن کاملذخیره در منابع من
با ذخیره ی این منبع در منابع من، دسترسی به آن را برای استفاده های بعدی آسان تر کنید
عنوان ژورنال:
دوره شماره
صفحات -
تاریخ انتشار 2016